袁勋课题组

 

 

刘勇
2018-12-06 00:58  

 

 

刘勇,青岛科技大学材料科学与工程学院特聘副教授,研究生导师。

 

邮箱:yong.liu@qust.edu.cn

 

教育及工作经历:

201811月至今,青岛科技大学,材料科学与工程学院,特聘副教授

2016.07-2018.07,博士后,Texas Tech university (美国德州理工大学)  

2011.07-2016.07,攻读材料与光电子专业博士学位,华东师范大学        

2007.09-2011.07,攻读材料化学专业学士学位,内蒙古师范大学      

 

主要研究方向:

1.基于静电纺丝定向构筑金属纳米团簇阵列;

2.抗菌&电容去离子脱盐技术(高性能薄膜电极材料、流动式电极电容去离子技术);

3.金属纳米团簇/二维片层材料复合物设计和电化学应用;

4.水系超级电容器。

 

相关论文

  After QUST  

1. In situ synthesis of bismuth nanoclusters within carbon nano-bundles from metal-organic framework for chloride-driven electrochemical deionization.

     Y. Liu, L. Wang, Q. Yao, X. Gao, X. Du, X. Dou, H. Zhu, X. Yuan, J. Xie, Adv. Funct. Mater., 32 (2022) 2110087.

2. Recent advances in faradic electrochemical deionization: system architectures versus electrode materials.

     Y. Liu, K. Wang, X. Xu, K. Eid, A.M. Abdullah, L. Pan, Y. Yamauchi, ACS Nano, 15 (2021) 13924-13942.

3. Up-shifting the desalination rate limit of capacitive deionization via integrating chloride-capturing Bi nanocluster with flow-through cell architecture.

     L. Wang, Z. Liu, Z. Wang, Q. Ma, Z. Guo, G. Shen, K. Wang, X. Xu, Y. Liu, X. Yuan, Chem. Eng. J., 460 (2023) 141726.

4. Controlled synthesis of bismuth oxychloride-carbon nanofiber hybrid materials as highly efficient electrodes for rocking-chair capacitive deionization.

     Y. Liu, X. Gao, Z. Wang, K. Wang, X. Dou, H. Zhu, X. Yuan, L. Pan, Chem. Eng. J., 403 (2021) 126326.

5. Three-dimensional charge transfer pathway in close-packed nickel hexacyanoferrate−on−MXene nano-stacking for high-performance capacitive deionization. 

     Z. Chen, Z. Ding, Y. Chen, X. Xu, Y. Liu, T. Lu, L. Pan, Chem. Eng. J., 452 (2023) 139451.

6. Chloride pre-intercalated CoFe-layered double hydroxide as chloride ion capturing electrode for capacitive deionization.

     K. Wang, Y. Liu, Z. Ding, Z. Chen, X. Xu, M. Wang, T. Lu, L. Pan, Chem. Eng. J., 433 (2022) 133578.

7. Layered double hydroxide coated electrospun carbon nanofibers as the chloride capturing electrode for ultrafast electrochemical deionization.

     Y. Liu, X. Du, Z. Wang, L. Wang, Z. Liu, W. Shi, R. Zheng, X. Dou, H. Zhu, X. Yuan, J. Colloid Interf. Sci., 609 (2022) 289-296.

8. Bismuth oxychloride nanostructure coated carbon sponge as flow-through electrode for highly efficient rocking-chair capacitive deionization.

     K. Wang, X. Du, Z. Liu, B. Geng, W. Shi, Y. Liu, X. Dou, H. Zhu, L. Pan, X. Yuan, J. Colloid Interf. Sci., 608 (2022) 2752-2759.

9. Carbon nanotube bridged nickel hexacyanoferrate architecture for high-performance hybrid capacitive deionization.

     L. Xu, Z. Ding, Y. Chen, X. Xu, Y. Liu, J. Li, T. Lu, L. Pan, J. Colloid Interf. Sci., 630 (2023) 372-381.

10. Controlled synthesis of NaTi2(PO4)3/Carbon composite derived from Metal-organic-frameworks as highly-efficient electrodes for hybrid capacitive deionization.

     K. Wang, Y. Liu, Z. Ding, Z. Chen, G. Zhu, X. Xu, T. Lu, L. Pan, Sep. Purif. Technol., 278 (2022) 119565.

11. MoS2 nanoflakes-coated electrospun carbon nanofibers for “rocking-chair” capacitive deionization.

     Y. Liu, X. Du, Z. Wang, L. Zhang, Q. Chen, L. Wang, Z. Liu, X. Dou, H. Zhu, X. Yuan, Desalination, 520 (2021) 115376.

12. Mn2O3 nanoflower decorated electrospun carbon nanofibers for efficient hybrid capacitive deionization.

     Y. Liu, X. Gao, L. Zhang, X. Shen, X. Du, X. Dou, X. Yuan, Desalination, 494 (2020) 114665.

13. MnO2 decorated porous carbon derived from Enteromorpha prolifera as flow-through electrode for dual-mode capacitive deionization.

     Y. Liu, B. Geng, Y. Zhang, X. Gao, X. Du, X. Dou, H. Zhu, X. Yuan, Desalination, 504 (2021) 114977.

14. Ultra-durable and highly-efficient hybrid capacitive deionization by MXene confined MoS2 heterostructure.

     Z. Chen, X. Xu, Y. Liu, J. Li, K. Wang, Z. Ding, F. Meng, T. Lu, L. Pan, Desalination, 528 (2022) 115616.

15. Rocking-chair capacitive deionization with flow-through electrodes.

     Y. Liu, X. Gao, K. Wang, X. Dou, H. Zhu, X. Yuan, L. Pan, J. Mater. Chem. A, 8 (2020) 8476-8484.

16. MoC nanoparticle-embedded carbon nanofiber aerogels as flow-through electrodes for highly efficient pseudocapacitive deionization.

     Y. Liu, Y. Zhang, Y. Zhang, Q. Zhang, X. Gao, X. Dou, H. Zhu, X. Yuan, L. Pan, J. Mater. Chem. A, 8 (2020) 1443-1450.

17. Metal-organic-frameworks-derived NaTi2(PO4)3/carbon composites for efficient hybrid capacitive deionization.

     K. Wang, Y. Liu, Z. Ding, Y. Li, T. Lu, L.K. Pan, J. Mater. Chem. A, 7 (2019) 12126-12133.

18. The in situ synthesis of silver nanoclusters inside a bacterial cellulose hydrogel for antibacterial applications.

     Y. Liu, S. Wang, Z. Wang, Q. Yao, S. Fang, X. Zhou, X. Yuan, J. Xie, Journal of Materials Chemistry B, 8 (2020) 4846-4850.

19. Recent Advances of Biomass Derived Electrode Materials for Capacitive Deionization.

     Y. Liu, G. Xin, Z. Lu, D. Xin, D. Xinyue, S. Xiaolong, Z. Haiguang, Y. Xun, Current Nanoscience, 17 (2021) 1-17.

20. Engineering Durable Superhydrophobic Photocatalyst for Oil-Water Separation and Degradation of Chemical Pollutants.

     H. Zhu, L. Chen, X. Dou, Y. Liu, X. Yuan, ChemistrySelect, 6 (2021) 7271-7277.

21. A Brief Review on High-Performance Capacitive Deionization Enabled by Intercalation Electrodes.

     Z. Liu, X. Shang, H. LiuY, Global Challenges5 (2020) 2000054.


  Before QUST  

1. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial cellulose for highly-efficient capacitive deionization.

      Y. Li, Y. Liu , M. Wang, X. Xu, T. Lu, C. Q. Sun and L. Pan, Carbon 2018, 130, 377-383.

2. Cocoon derived nitrogen enriched activated carbon fiber networks for capacitive deionization.

      L. Zhang, Y. Liu, T. Lu and L. Pan, J. Electroanal. Chem., 2017.

3. Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization.

      Y. Liu, J. Ma, T. Lu and L. Pan, Sci. Rep., 2016, 6, 32784.

4. From metal-organic frameworks to porous carbons: A promising strategy to prepare high-performance electrode materials for capacitive deionization.

      M. Wang, X. Xu, Y. Liu, Y. Li, T. Lu, and L. Pan, Carbon 2016, 108, 433.

5. In situ construction of carbon nanotubes/nitrogen-doped carbon polyhedra hybrids for supercapacitors.

      X. Xu, M. Wang, Y. Liu, Y. Li, T. Lu, and L. Pan, Energy Storage Materials 2016, 5, 132.

6. Metal-organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization.

      X. Xu, M. Wang, Y. Liu, T. Lu, and L. Pan, J. Mater. Chem. A 2016, 4, 5467.

7. Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization.

      Y. Liu, X.T. Xu, T. Lu, Z. Sun, and K. Pan, RSC Adv., 2015, 5, 34117-34124.

8. Shuttle‐like Porous Carbon Rods from Carbonized Metal–Organic Frameworks for High‐Performance Capacitive Deionization.

      X. Xu, J. Li, M. Wang, Y. Liu, T. Lu, L. Pan, Chem Electro Chem. 2016, 3, 993.

9. Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization.

      X. Xu, Y. Liu, M. Wang, C. Zhu, T. Lu, R. Zhao, and L. Pan, Electrochim. Acta. 2016, 193, 88.

10. Ultrahigh desalinization performance of asymmetric flow-electrode capacitive deionization device with an improved operation voltage of 1.8 V.

      X. Xu, M. Wang, Y. Liu, T. Lu, and L. Pan, ACS Sustainable Chemistry & Engineering, 2016, 5, 189.

20. Ultra-thin carbon nanofiber networks derived from bacterial-cellulose for capacitive deionization.

      Y. Liu, T. Lu, Z. Sun, and L. Pan, J. Mater. Chem. A, 2015, 3, 8693-8700.

21. Nitrogen-doped carbon nanorods with excellent capacitive deionization ability.

      Y. Liu, X. Xu, M. Wang, T. Lu, Z. Sun and L. Pan, J. Mater. Chem. A, 2015, 3, 17304-17311.

22. Porous carbon spheres via microwave-assisted synthesis for capacitive deionization.

      Y. Liu, L.K. Pan, T. Q. Chen, X. T. Xu, T. Lu, Z. Sun, and D. Chua, Electrochim. Acta, 2015, 151, 489-496.

23. Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization.

      Y. Liu, T. Chen, T. Lu, Z. Sun, D.H. Chua, and L. Pan, Electrochim. Acta, 2015, 158, 403-409.

24. Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Y. Liu, X. Xu, M. Wang, T. Lu, Z. Sun and L. Pan, Chem. Commun., 2015, 51, 12020-12023.

25. Review on carbon-based composite materials for capacitive deionization.

      Y. Liu, C.Y. Nie, X.J. Liu, X.T. Xu, Z. Sun, L.K. Pan, RSC Adv., 2015, 5, 15205-15225.

26. Facile synthesis of novel graphene sponge for high performance capacitive deionization.

      X. T. Xu, L. K. Pan, Y. Liu, T. Lu, Z. Sun, D. H. Chua, Sci. Rep., 2015, 5, 8458.

27. Enhanced capacitive deionization performance of graphene by nitrogen doping.

      X. T. Xu, L.K. Pan, Y. Liu, T. Lu, and Z. Sun, J. Colloid Interface Sci., 2015, 445, 143-150.

28. Carbon microspheres via microwave-assisted synthesis as counter electrodes of dye-sensitized solar cells.

      H. Sun, T. Chen, Y. Liu, X. Hou, L. Zhang, G. Zhu, Z. Sun, and L. Pan, J. Colloid Interface Sci. 2015, 445, 326.

29. Carbon nanorods derived from natural based nanocrystalline cellulose for highly efficient capacitive deionization.

      Y. Liu, L.K. Pan, X.T. Xu, T. Lu, Z. Sun, and D. H. C. Chua, J. Mater. Chem. A 2014, 2, 20966-20972.

30. Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes. 

      Y. Liu, L.K. Pan, X.T. Xu, T. Lu, Z. Sun, D.H. Chua, Electrochim. Acta2014, 130, 619-624.

31. Carbon aerogels electrode with reduced graphene oxide additive for capacitive deionization with enhanced performance.

      Y. Liu, C.Y. Nie, L.K. Pan, X.T. Xu, Z. Sun, and D.H. Chua, Inorg. Chem. Front.2014, 1, 249-255.

32. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance.

      T. Q. Chen, Y. Liu, L. K. Pan, T. Lu, Y. F. Yao, Z. Sun, D.H. Chua, and Q. Chen, J. Mater. Chem. A 2014, 2, 4117-4121.

33. Electrosorption of LiCl in different solvents by carbon nanotube film electrodes.

      Y. Liu, L.K. Pan, X.T. Xu, T. Lu, Z. Sun, RSC Adv.2013, 3, 16932-16935.

34. Carbon nanotube and carbon nanofiber composite films grown on different graphite substrate for capacitive deionization.

      Y. Liu, H.B. Li, C.Y. Nie, L.K. Pan, Z. Sun, Desalin Water Treat, 2013, 51, 3988-3994.

35. Enhanced capacitive behavior of carbon aerogels/reduced graphene oxide composite film for super-capacitors.

      C. Y. Nie, D. Liu, L.K. Pan, Y. Liu, Z. Sun, and J. Shen, Solid State Ionics2013, 247, 66-70.

36. TiO2-Au composite for efficient UV photocatalytic reduction of Cr (VI).

      X. Liu, T. Lv, Y. Liu, L. Pan, Z. Sun, Desalin Water Treat. 2013, 51, 3889.

37. Reduced graphene oxide and activated carbon composites for capacitive deionization.

      H.B. Li, L.K. Pan, C.Y. Nie, Y. Liu, and Z. Sun, J. Mater. Chem.2012, 22, 15556-15561.

38. Electrophoretic deposition of carbon nanotubes–polyacrylic acid composite film electrode for capacitive deionization.

      C. Y. Nie, L.K. Pan, Y. Liu, H. Li, T.Q. Chen, T. Lu, and Z. Sun, Electrochim. Acta2012, 66, 106-109.

  

专利项目

一种基于流动式电极的高效膜电容去离子装置 (专利授权号ZL201420846013.6),刘勇,孙卓,潘丽坤,徐兴涛

关闭窗口